Nonconvex Nonsmooth Minimization via Cutting Planes and Feasible Direction In- terior Point Method
نویسندگان
چکیده
Nowadays, solving nonsmooth (not necessarily differentiable) optimization problems plays a very important role in many areas of industrial applications. Most of the algorithms developed so far deal only with nonsmooth convex functions. In this paper, we propose a new algorithm for solving nonsmooth optimization problems that are not assumed to be convex. The algorithm combines the traditional cutting plane method with some features of bundle methods, and the search direction calculation of feasible direction interior point algorithm [Herskovits 1998]. The algorithm to be presented generates a sequence of interior points to the epigraph of the objective function. The accumulation points of this sequence are solutions to the original problem. We prove the global convergence of the method for locally Lipschitz continuous functions and give some preliminary results from numerical experiments.
منابع مشابه
A Feasible Directions Method for Nonsmooth Convex Optimization
We propose a new technique for minimization of convex functions not necessarily smooth. Our approach employs an equivalent constrained optimization problem and approximated linear programs obtained with cutting planes. At each iteration a search direction and a step length are computed. If the step length is considered “non serious”, a cutting plane is added and a new search direction is comput...
متن کاملMinimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control
We describe an extension of the classical cutting plane algorithm to tackle the unconstrained minimization of a nonconvex, not necessarily differentiable function of several variables. The method is based on the construction of both a lower and an upper polyhedral approximation to the objective function and it is related to the use of the concept of proximal trajectory. Convergence to a station...
متن کاملGlobally Convergent Cutting Plane Method for Nonconvex Nonsmooth Minimization
Nowadays, solving nonsmooth (not necessarily differentiable) optimization problems plays a very important role in many areas of industrial applications. Most of the algorithms developed so far deal only with nonsmooth convex functions. In this paper, we propose a new algorithm for solving nonsmooth optimization problems that are not assumed to be convex. The algorithm combines the traditional c...
متن کاملLimited memory interior point bundle method for large inequality constrained nonsmooth minimization
Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables with various constraints. In this paper, we describe a new efficient adaptive limited memory interior point bundle method for large, possible nonconvex, nonsmooth inequality constrained optimization. The method is a hybrid of the nonsmooth variable met...
متن کاملUnsupervised and supervised data classification via nonsmooth and global optimization1
We examine various methods for data clustering and data classification that are based on the minimization of the so-called cluster function and its modifications. These functions are nonsmooth and nonconvex. We use Discrete Gradient methods for their local minimization. We consider also a combination of this method with the cutting angle method for global minimization. We present and discuss re...
متن کامل