Nonconvex Nonsmooth Minimization via Cutting Planes and Feasible Direction In- terior Point Method

نویسندگان

  • Mario Tanaka
  • José Herskovits
  • Napsu Karmitsa
چکیده

Nowadays, solving nonsmooth (not necessarily differentiable) optimization problems plays a very important role in many areas of industrial applications. Most of the algorithms developed so far deal only with nonsmooth convex functions. In this paper, we propose a new algorithm for solving nonsmooth optimization problems that are not assumed to be convex. The algorithm combines the traditional cutting plane method with some features of bundle methods, and the search direction calculation of feasible direction interior point algorithm [Herskovits 1998]. The algorithm to be presented generates a sequence of interior points to the epigraph of the objective function. The accumulation points of this sequence are solutions to the original problem. We prove the global convergence of the method for locally Lipschitz continuous functions and give some preliminary results from numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Feasible Directions Method for Nonsmooth Convex Optimization

We propose a new technique for minimization of convex functions not necessarily smooth. Our approach employs an equivalent constrained optimization problem and approximated linear programs obtained with cutting planes. At each iteration a search direction and a step length are computed. If the step length is considered “non serious”, a cutting plane is added and a new search direction is comput...

متن کامل

Minimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control

We describe an extension of the classical cutting plane algorithm to tackle the unconstrained minimization of a nonconvex, not necessarily differentiable function of several variables. The method is based on the construction of both a lower and an upper polyhedral approximation to the objective function and it is related to the use of the concept of proximal trajectory. Convergence to a station...

متن کامل

Globally Convergent Cutting Plane Method for Nonconvex Nonsmooth Minimization

Nowadays, solving nonsmooth (not necessarily differentiable) optimization problems plays a very important role in many areas of industrial applications. Most of the algorithms developed so far deal only with nonsmooth convex functions. In this paper, we propose a new algorithm for solving nonsmooth optimization problems that are not assumed to be convex. The algorithm combines the traditional c...

متن کامل

Limited memory interior point bundle method for large inequality constrained nonsmooth minimization

Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables with various constraints. In this paper, we describe a new efficient adaptive limited memory interior point bundle method for large, possible nonconvex, nonsmooth inequality constrained optimization. The method is a hybrid of the nonsmooth variable met...

متن کامل

Unsupervised and supervised data classification via nonsmooth and global optimization1

We examine various methods for data clustering and data classification that are based on the minimization of the so-called cluster function and its modifications. These functions are nonsmooth and nonconvex. We use Discrete Gradient methods for their local minimization. We consider also a combination of this method with the cutting angle method for global minimization. We present and discuss re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009